Charge transfer and surface scattering at Cu-C60 planar interfaces.

نویسندگان

  • Hebard
  • Ruel
  • Eom
چکیده

Thin-film planar structures of Cu and C60 have been sequentially deposited onto sapphire substrates in high vacuum and studied using in situ resistivity measurements during deposition together with ex situ atomic force microscopy characterization of surface topography. Two different regimes of behavior are identified. In the first of these, the thin-film limit in which the Cu is thin enough to be in the coalescence regime with an islanded morphology, the presence of an adjacent C60 monolayer, doped by charge transfer from the metal, creates a shunting path and a corresponding pronounced decrease in resistance. The sheet resistance of overlying doped monolayers is found to be ;8000 V, with a corresponding room-temperature resistivity that is a factor of 2 less than that of the three-dimensional alkali-metal-doped compounds A3C60 ~A5K, Rb!. The enhanced conductivity of an underlying monolayer of C60 is sufficient to reduce the critical thickness at which an overlying Cu film becomes conducting by almost a factor of 2 even though the roughness of such films is enhanced over that of Cu films deposited directly on the substrate. In the second regime of behavior, the continuous film limit in which the Cu is thick enough to have a size-effect resistivity proportional to the reciprocal of the film thickness, the presence of an adjacent C60 monolayer gives rise to an increase in resistance. Measurements on a number of samples with different thicknesses reveal that this resistance increase is best described by diffuse surface scattering. A scattering cross section of 5 Å resulting from a fit to this model represents the contact area under each C60 molecule. @S0163-1829~96!04643-7#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STM-HREELS Investigation of C60 on Cu(111)

Using an STMJHREELS system, we have investigated the relationship between the surface morphology and vibrational modes of C60 adsorbed on Cu(l11). At 300K, CGO is mobile on the Cu(ll1) terrace, but is more strongly bound at the step edge. Therefore, any C60 which adsorbs on the terrace will migrate to the step edge where it is immobilized. Thus for very low coverages, the ChO preferentially ads...

متن کامل

Investigating the resonance energy and charge transfer in the clonidine and c60-clonidine-fullerene carriers with quantum chemistry calculations

Clonidine has two aromatic rings in which halogens are attached to one ring in this study, both in drug state and in fullerene nanostructure, and by changing the type of halogen at the * HF / 6-31G level and in The gas phase was first optimized and then the NBO calculations were performed. The results obtained in N61, N63 and N5, N3 indicate the highest rhizanese energy and load transfer that, ...

متن کامل

Optimal electron doping of a C60 monolayer on Cu(111) via interface reconstruction.

We demonstrate the charge state of C60 on a Cu(111) surface can be made optimal, i.e., forming C60(3-) as required for superconductivity in bulk alkali-doped C60, purely through interface reconstruction rather than with foreign dopants. We link the origin of the C60(3-) charge state to a reconstructed interface with ordered (4x4) 7-atom vacancy holes in the surface. In contrast, C60 adsorbed on...

متن کامل

Theoretical Investigation of the C60/Copper Phthalocyanine Organic Photovoltaic Heterojunction

Molecular heterojunctions, such as the one based on copper phthalocyanine (CuPc) and carbon fullerene (C60) molecules, are commonly employed in organic photovoltaic cells as electron donor–acceptor pairs. We have investigated the different atomic structures and electronic and optical properties of the C60/CuPc heterojunction through first-principles calculations based on density functional theo...

متن کامل

Molecular semiconductor blends: Microstructure, charge carrier transport, and application in photovoltaic cells

Ambipolar organic semiconductor blends, i.e. mixtures of electron and hole conducting materials, attain growing interest due to their utilization in quasi-complementary organic fieldeffect transistors and organic photovoltaic cells. Many investigations in the latter field have reported an increase of the solar cell efficiency by optimizing the balance between charge carrier transport in phase-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. B, Condensed matter

دوره 54 19  شماره 

صفحات  -

تاریخ انتشار 1996